Published
1.1 Scope of FprCEN/TS 19101
(1) This document applies to the design of buildings, bridges and other civil engineering structures in fibre-polymer composite materials, including permanent and temporary structures. It complies with the principles and requirements for the safety, serviceability and durability of structures, the basis of their design and verification that are given in EN 1990.
NOTE In this document, fibre-polymer composite materials are referred to as composite materials or as composites.
(2) This document is only concerned with the requirements for resistance, serviceability, durability and fire resistance of composite structures.
NOTE 1 Specific requirements concerning seismic design are not considered.
NOTE 2 Other requirements, e.g. concerning thermal or acoustic insulation, are not considered.
(3) This document gives a general basis for the design of composite structures composed of (i) composite members, or (ii) combinations of composite members and members of other materials (hybrid-composite structures), and (iii) the joints between these members.
(4) This document applies to composite structures in which the values of material temperature in members, joints and components in service conditions are (i) higher than -40 °C and (ii) lower than - 20 °C, where is the glass transition temperature of composite, core and adhesive materials, defined according to 5.1(1).
(5) This document applies to:
(i) composite members, i.e. profiles and sandwich panels, and
(ii) bolted, bonded and hybrid joints and their connections.
NOTE 1 Profiles and sandwich panels can be applied in structural systems such as beams, columns, frames, trusses, slabs, plates and shells.
NOTE 2 Sandwich panels include homogenous core and web-core panels. In web-core panels, the cells between webs can be filled (e.g. with foam) or remain empty (e.g. panels from pultruded profiles).
NOTE 3 This document does not apply to sandwich panels made of metallic face sheets.
NOTE 4 Built-up members can result from the assembly of two or more profiles, through bolting and/or adhesive bonding.
NOTE 5 The main manufacturing processes of composite members include pultrusion, filament winding, hand layup, resin transfer moulding (RTM), resin infusion moulding (RIM), vacuum-assisted resin transfer moulding (VARTM).
NOTE 6 This document does not apply to composite cables or special types of civil engineering works (e.g. pressure vessels, tanks or chemical storage containers).
(6) This document applies to:
(i) the composite components of composite members, i.e. composite plies, composite laminates, sandwich cores and plates or profiles, and
(ii) the components of joints or their connections, i.e. connection plates or profiles (e.g. cleats), bolts, and adhesive layers.
NOTE 1 Composite components are composed of composite materials (i.e. fibres and matrix resins) and core materials. Components of joints and their connections are also composed of composite, steel or adhesive materials.
NOTE 2 The fibre architecture of composite components can comprise a single type of fibres or a hybrid of two or more types of fibres.
NOTE 3 This document does not apply to composite components used for internal reinforcement of concrete structures (composite rebars) or strengthening of existing structures (composite rebars, strips or sheets).
(7) This document applies to composite materials, comprising:
(i) glass, carbon, basalt or aramid fibres, and
(ii) a matrix based on unsaturated polyester, vinylester, epoxy or phenolic thermoset resins.
PUBLISHED
SRPS CEN/TS 19101:2024
60.60
Standard published
May 31, 2024