ISO 16890-1:2016 establishes an efficiency classification system of air filters for general ventilation based upon particulate matter (PM). It also provides an overview of the test procedures, and specifies general requirements for assessing and marking the filters, as well as for documenting the test results. It is intended for use in conjunction with ISO 16890‑2, ISO 16890‑3 and ISO 16890‑4.
The test method described in this part of ISO 16890 is applicable for air flow rates between 0,25 m3/s (900 m3/h, 530 ft3/min) and 1,5 m3/s (5 400 m3/h, 3 178 ft3/min), referring to a test rig with a nominal face area of 610 mm × 610 mm (24 inch × 24 inch).
ISO 16890 (all parts) refers to particulate air filter elements for general ventilation having an ePM1 efficiency less than or equal to 99 % when tested according to the procedures defined within ISO 16890‑1, ISO 16890‑2, ISO 16890‑3 and ISO 16890‑4. Air filter elements with a higher initial efficiency are evaluated by other applicable test methods (see ISO 29463-1, ISO 29463-2, ISO 29463-3, ISO 29463-4 and ISO 29463-5).
Filter elements used in portable room-air cleaners are excluded from the scope of this part of ISO 16890.
The performance results obtained in accordance with ISO 16890 (all parts) cannot by themselves be quantitatively applied to predict performance in service with regard to efficiency and lifetime. Other factors influencing performance to be taken into account are described in Annex A.
Directives related to this standard.
Commission Regulation (EU) No 1253/2014 of 7 July 2014 implementing Directive 2009/125/EC of the European Parliament and of the Council with regard to ecodesign requirements for ventilation units
Commission Delegated Regulation (EU) No 1254/2014 of 11 July 2014 supplementing Directive 2010/30/EU of the European Parliament and of the Council with regard to energy labelling of residential ventilation units
WITHDRAWN
SRPS EN 779:2012
PUBLISHED
SRPS EN ISO 16890-1:2017
60.60
Standard published
Sep 25, 2017
PROJECT
prSRPS EN ISO 16890-1:2023